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ABSTRACT
For many years, accepted dogma held that brain is a static organwith no possibility of regeneration of cells in injured or diseased human brain.

However, recent preclinical reports have shown regenerative potential of neural stem cells using various injury models. This has resulted in

renewed hope for those suffering from spinal cord injury and neural damage. As the potential of stem cell therapy gained impact, these claims,

in particular, led to widespread enthusiasm that acute and chronic injury of the nervous system would soon be a problem of the past. The

devastation caused by injury or diseases of the brain and spinal cord led to wide premature acceptance that ‘‘neural stem cells (NSCs)’’ derived

from embryonic, fetal or adult sources would soon be effective in reversing neural and spinal trauma. However, neural therapy with stem cells

has not been realized to its fullest extent. Although, discrete population of regenerative stem cells seems to be present in specific areas of

human brain, the function of these cells is unclear. However, similar cells in animals seem to play important role in postnatal growth as well as

recovery of neural tissue from injury, anoxia, or disease. J. Cell. Biochem. 114: 764–772, 2013. � 2012 Wiley Periodicals, Inc.
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T he signals generated and transmitted in response to stimulus

are necessary for communication between complex networks

of neurons, which once disrupted, cannot be restored. In vitro,

differentiation of neuronal—like cells from putative stem cells

often is verified by morphology, wherein the cultured cells emit

projections that resemble those of neurons derived from animals.

However, it is now clear that many antigens considered specific for

neural tissue could be expressed by many other cells, especially

endothelial cells and monocytes [Vescovi et al., 1993]. Furthermore,

nestin, the neuroepithelial stem cells marker seems to be expressed

in most of the mitotically active cells. Suggestions regarding the

existence of dividing cells in the postnatal central nervous system

(CNS) were raised in 1901 by Hamilton. Ramon and Cajal [1913]

suggested that neurons are generated exclusively during prenatal

phase of development. Kaplan and Hinds [1977], and Kaplan and

Bell [1984] proved that new born neurons in hippocampus survived

for long periods of time, appeared to receive synaptic inputs and also

extend projections to their target area. While, Reynolds and Weiss

[1992] in 1992 isolated adult NSCs from adult CNS of rodents,

Kukekov et al. [1999] isolated NSCs from human embryo. Belluzzi

et al. [2003] showed that the new born neurons in adult mammalian

CNS are indeed functional and synaptically integrated.

In 1983, Nottebohm et al. demonstrated the genesis of neurons

in the telencephalon of adult male songbirds. In addition, it was

found that acquisition of new neurons is hormonally controlled and

therefore seasonally regulated, corresponding to the mating season

of singing songbirds [Nottebohm, 1981]. The events may thus be

independent but stimulated by common factors that arise during

seasonal alterations of the environment.

Studies by the group of Stevens and Gage in 2002 indicated that

adult NSCs indeed form functional neurons and do not simply express

protein markers specific to differentiation. By recording electrical

signals of the cultured cells, they showed that these fluorescently

labeled precursors formed dendrites and synapses in the rat brain,

challenging the dogma that neurons are not replaced in brain [Song

et al., 2002]. The adult brain maintains discrete parts of neurogenesis,

new neurons migrate from these parts and become integrated into the

functional circuitry of the brain. These multipotent stem cells are

present in various regions of the brain including the cortex [Marmur

et al., 1998], the subventricular zone (SVZ) [Levison and Goldman,

1997] and the ventricular zone [Cai et al., 2002]. NSCs produce

neuroblasts that migrate from the SVZ along a separate pathway, the

rostral migratory stream; the mature neurons involved in the sense of

smell are formed in to the olfactory bulb [Lennington et al., 2003].
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NEUROGENESIS AND TRANSDIFFERENTIATION
IN BRAIN

Positional effects of NSCs can be appreciated by the observation

that SVZ neuronal precursors have a bias to form olfactory bulb

derivatives [Gritti et al., 2002] spinal cord neuron restricted

precursors give rise to cholinergic neurons [Kalyani et al., 1998]

and hippocampal neuronal progenitor cells develop CA1 and CA3

neurons [Regnell et al., 2012]. It is important to understand the

timing of developmental restrictions that occur while identifying the

optimal source of stem cells for transplantation. Such phenotypic

restrictions occur early in development and cells can be isolated

based on characteristics unique to that cell population which may

vary according to applications for different neurological disorders.

In some transplant experiments, it has been shown that CNS stem

cells will not populate the peripheral nervous system (PNS) and vice

versa [Moreno and Fraser, 2002]. NSCs are part of CNS that have

the capacity to self-renew and give rise to astrocytes, neurons, and

oligodendrocytes. Oligodendrocyte precursor cells and Schwann

cells of the CNS have the capability to remyelinate the injured CNS

axon. In contrast, remyelination of injured axon in multiple

sclerosis (MS) is limited. In addition to this, boundary cap cell which

is the type of PNS stem cell population can differentiate into CNS as

well as PNS lineage [Reynolds and Weiss, 1992; Fawcett and Asher,

1999; Zujovic et al., 2011]. Neural crest stem cells (NCSCs) are likely

regionally specified and the differentiated progeny of NCSCs and

olfactory stem cells appears to be capable of enhancing CNS repair

and regeneration [Bunge, 2002]. Indeed dramatic results have been

reported with OEC (olfactory ensheathing glia) transplants in spinal

cord injury models and it is likely that these cells can be harvested

from the adult neuroepithelium and amplified in vitro. Undifferen-

tiated embryonic stem (ES) cells may have limited use for therapy

due to their propensity to form teratomas while the ES cells derived

differentiating neural progenitors and also the matured ones can be

valuable for therapy provided they are properly depleted of

undifferentiated cells. Depending on the role of transplanted cells,

one would choose a cell type based on their properties and ease of

availability and isolation. While attempting to replace neurons,

as in the case of ALS, one would choose a neuronal precursor, a

multipotent stem cell, or a glial cell. Using the human ESC-based

ALS model, the Eggan’s group has revealed that inhibition of

signaling through the classic prostaglandin D2 receptor suppresses

the toxic effect of SOD1 glia on motor neurons, hence providing a

target for developing new methods of cure for ALS [Giorgio et al.,

2008].

It is generally believed that the adult bone marrow cells can bring

about the required changes in the tissue adjacent to the site of

implantation repopulating the cell lineages during lifetime. A

plethora of recent results frommany groups suggests that adult stem

cells may have a broader differentiation capacity than expected and

that their fate may not be as tissue specific as once thought. It has

been shown that adult NSCs can differentiate into a broad range of

cells of different sources when introduced into myogenic cells and

blastocyst. Moreover, skeletal muscle, brain and hepatic cells can

give rise to bone marrow stem cells, whereas blood cells can

generate from muscle precursors [Vescovi et al., 2002]. However,

many argue that original source of tissue used in these studies was

contaminated by blood and the hematopoietic stem cells in that

blood gave rise to the blood cells formed. There are some reports

which indicate that the structures do not develop from a single

primordial stem cell but arise from the coordinated and dynamic

interactions of many stem cells in what amounts to a ‘‘stem system,’’

similar to primitive buds that give rise to limbs amputated from

primitive animals. Others believe that in response to distal injury,

cells of the sub lamina undergo reverse differentiation and then

differentiate to form viable tissues. Lately, induced pluripotent stem

cells (iPSCs), are a type of artificially derived pluripotent stem cell

from a non-pluripotent cell (from adult somatic cell), by providing

the inducing medium to ‘‘forced’’ expression of specific genes, have

been using for the same.

SOURCES OF NSCS

Large-scale resources of NSCs are crucial for both basic research and

for the development of novel approaches for treating neurological

disorders. NSCs primarily arise from embryonic ectoderm that forms

neuroepithelial cells. The neuroepithelial cells generate radial glia

that produces fetal and adult NSCs within CNS [Weiner, 2008].

The alternative sources of neural stem cells are shown in Table I

[Nakatsu et al., 2005; Ryan et al., 2007; Robertson et al., 2008; Amit

et al., 2010; Polo et al., 2010; Julius et al., 2011; Uri and Benvenisty,

2011]. Cells including multiple subtypes of CNS and PNS neurons,

as well as oligodendrocytes, Schwann cells, and astrocytes, are

modeled in these large-scale sources. Although most cell lines

were initially from rodents, their human counterparts are being

characterized and discovered. The prominent regions in the

mammalian brain that have a reservoir of stem cells include the

ependymal lining, SVZ and the olfactory bulb [Gritti et al., 2002].

The ciliary margin and the limbal regions of the retina have also

been shown to be rich in NSCs which have been expanded in culture

and shown to grow into neurospheres, many of which have been

implanted in animal models to differentiate into retinal neurons.

Until recently, it was widely believed that the marrow did not

contain any non-hematopoitic cells. Recently, these cells have been

recognized as the colony forming fibroblasts and mesenchymal

cells. The latter type of cells have also been shown to be expressed in

Umbilical Cord, cord blood as well as other tissues and have been

found to be useful in neural regeneration [Song and Ramos, 2008].

Mesenchymal stem cells (MSCs) are multipotent stem cells

possessing the intrinsic ability to differentiate into different types

of cells that include osteocytes, adipocytes, and chondrocytes. MSCs

have been postulated to generate cells of the mesoderm, endoderm

and ectoderm, including neurons in culture depending of the

inducing agents used. Interestingly, progeny of human MSCs

infused after ectodermal differentiation has been identified in brains

of mice and other animals. Identification of these cells as human is

evident by a marker, only the infused cells possess due to their

tagging with fluorescent reporter genes such as green fluorescent

protein. Furthermore, the validation of these human cells as neural

cells relies on immune localization of specific antigens such as

nestin, S-100b, Sox2, Map2, GFAP, etc. In vitro MSCs have been
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shown to express properties of neuroectodermal cells by researchers

and in vivo after transplantation into spinal cord and the brain

[Mazzini et al., 2010]. NSC transplantation may be hampered by

the limited number of donors available and by the toxicity of

immunosuppressive regimens that may be needed after allogeneic

transplantation. These limitations may be avoided if NSCs can be

generated from clinically accessible sources, such as bone marrow

(BM) and peripheral blood samples that are suitable for autologous

transplantation. Fu et al. [2008] have reported that NSCs can be

generated from human BM-derived mesenchymal stem cells (MSCs).

When cultured in NSC culture conditions, 8% of MSCs were able to

generate neurospheres. These MSC-derived neurospheres expressed

characteristic NSC antigens, such as nestin and musashi-1, and

were capable of self-renewal and multilineage differentiation into

neurons, astrocytes, and oligodendrocytes. More recently, dental

pulp was shown to possess a pool of stem cells that were expanded in

culture which upon differentiation acquired a neural fate [Huang

et al., 2008]. These had earlier been used for regeneration of dental

and craniofacial cells. Spinal cord-derived NSCs have also been

isolated and characterized and search for new sources continue to

add to an increasing knowledge base in this area.

DETECTION AND MANIPULATION OF NSCS

Mice and humans studies have exposed a important developmental

occurrence of aneuploid NSCs, whereas other chromosomal defects,

such as inter-chromosomal translocations and partial chromosomal

deletions/insertions, are extremely rare.

‘‘Cre-Lox’’ systems in mice combined with other genetic markers

empower researchers to track differentiation markers that are

expressed in the growing brain. Neurosphere formation, which is

characterized by aggregates of similar looking cells in culture, is

another established system of screening the NSCs by virtue of their

immunoreactivty with markers specific to NSCs although absence

of differentiation markers doesn’t necessarily indicate absence of

differentiation or vice versa [Yang et al., 2005]. However, because

this assay may choose and enlarge a heterogeneous stem/progenitor

cell population, rigorous clonal, and serial subcloning analyses

are required to detect and document stem cell activity and to

unequivocally identify bona fide stem cells (see Fig. 1). Oncogene

immortalized cell lines are the beginner’s tool to dissect the

proliferation and differentiation cues in culture. In fact, recent

development of a magnetic bead based assay (Milteny Biotech, Inc.)

allows sorting of putative NSCs using a cocktail of antibodies

specific for markers expected to be selectively expressed by these

cells. Similarly, the study of migration of these cells requires

accurate mapping of the traffic of NSCs in the mammalian brain. The

migration of stem cells to an injured or infarcted region of the brain

requires mobilization, and it is imperative to mark these donor cells

in order to differentiate them from resident stem cells. Various

methods of labeling exist that include the use of genetically tagged

NSCs or Y chromosome labeling that employs donor NSCs frommale

cells transplanted into female recipients. Lately, several dyes are

being used for such types of labeling. Prominent among these is the

CFDA-SE label. CFDA is an ester which diffuses into the cell where itT
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is acted upon by endogenous esterases which liberate secondary

products that interact with amines and fluoresce at the similar

wavelength as GFP and imparts green fluorescence to the

transplanted cell. There has been an equally rapid development

in the field of cell marker analysis which characterize particular

stem cells and enables sorting of these cells from various sources,

based on the expression of neural antigens such as nestin and

musashi. Two photon microscopy also has been used and represents

a powerful tool that has greatly empowered analysis by allowing in

vivo imaging of cells [Wang et al., 2006]. Many argue that the

neuronal regeneration has no meaning unless there is functional

revival of the affected region of brain. Functional MRI and

electrophysiological measurements are powerful tools which allow

localization of functional neurons in vivo and in vitro, respectively.

Investigators have shown that human NSCs express both outward

and inward K(þ) currents with no evidence of Na(þ) currents [Cho

et al., 2002] and are useful in evaluating the potential for clinical

translation. Similarly, electroretinograms enable assessment of

regenerative capacity of stem cells in the eye and are very effective

in strengthening the detection of regenerating neurons induced

pharmacologically.

REGULATION OF NEURAL STEM CELLS:
INTRINSIC CUES VERSUS GROWTH FACTORS

The reductionist view is the heart of breakthroughs in stem cell

biology as it allows the clear definition of stem cell characteristics

using genetic and molecular tools. The NSCs acquire a neural fate

in response to environmental signals, leading to migration or

differentiation into defined phenotypes. Apart from genetic signals

that shape the pluripotency of these cells, cytokines and growth

Fig. 1. Schematic representation of manipulation of neural stem cells. SVZ, subventricular zone; NSCs, neural stem cells; EGF, endothelial growth factor; bFGF, basic fibroblast

growth factor; VFGF, viral fibroblast growth factor; Shh, sonic hedgehog; VEGF, vascular endothelial growth factor; FABP, fatty acid binding protein 7; S100B, S100 calcium

binding protein B; PAX6, paired box protein Pax-6; ACE, angiotensin I-converting enzyme; ALCAM, activated leukocyte cell adhesion molecule; A2B5, type 2 astrocyte precursor

marker; Olig1, oligoden drocyte transcription factor-1; Olig2, oligoden drocyte transcription factor-2; Olig3, oligoden drocyte transcription factor-3; PLP, proteolipid protein;

MBP, myelin basic protein; O2A, oligodendrocyte-type-2 astrocyte; GFAP, glial fibrillary acidic protein; O1, oligodendrocyte marker O1; O4, oligodendrocyte marker O4; CA2,

carbonic anhydrase 2.
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factors, particularly bFGF, EGF, and VEGF play prominent role in

proliferation and differentiation of the neural proginator cells.

Lately, several researchers have provided credible evidence that

angiogenesis and neurogenesis engage in a cross talk [Carmeliet and

Tessier-Lavigne, 2005; Sharma et al., 2009]. Nakatomi et al. [2002]

have shown that the infusion of EGF and FGF-2 into the lateral

ventricle of the rat model of ischemia, in which CA1 neurons are

selectively lost, leads to recovery of memory and learning functions

with concomitant regeneration of pyramidal neurons due to

neurogenesis. This has facilitated the discovery of factors that

would enable desirable neurogenesis (or angiogenesis). For example,

Gage’s group showed that enriched environment and exercise

improves neurogenesis and learning lending credence to the hope

that environment factors can greatly influence the rate of

neurogenesis [Van Praag et al., 2005].

Are we entering an era where cellular therapy may finally be able

to reverse some of the disorders of brain. NSCs are becoming

attractive tools for advancement of cellular therapy in neurodegen-

erative disorders. NSCs derived from fetuses have also been

successfully used for symptomatic treatment after long-term

follow-up in PD (Parkinson’s disease) patients and functional

improvement in patients who received fetal striatal grafts for

treatment of Huntington’s disease was remarkable [Claire et al.,

2008]. PD is the neurodegenative disorder of CNS resulting from the

death of substantia nigra (SN) which is located in midbrain. The

consequence of SN cell death results in dopamine deficits with

accompanying symptoms like movement rigidity, dementia, sleep

disorders, and psychological problems, etc. So far, the most effective

transplantation strategies concern the paracrine systems in which

the affected cells exert modulatory actions on target circuits such as

in the case of PD. More requirements have to be met in cases such as

focal ischemia where it may be possible to rebuild the anatomical

matrix. However, a long distance connection may be difficult

to recreate. As a consequence, the behavioral benefits may be

attributed to the tropic effects of transplants as the rewiring of

the disrupted circuits may be necessary but not sufficient. Even the

long-term follow-up of PD patients has shown that the limited

functional recovery of such patients comes long after anatomical

repair [Gogel et al., 2010]. Cell transplantation should be more

accessible where degeneration affects a restricted area, such as in

the case of PD, where transplants distributed across large areas

require multiple transplantation approaches and have to rely on

targeted migration of transplanted cells.

INJURY INDUCES STEM CELL RECRUITMENT

One important property that NSCs possess is migration. They were

once thought to be more suited to deliver substances to specific sites

in the brain than for regeneration. They appear to home to ischemic

and neoplastic areas of brain and at least three physiological

processes such as angiogenesis, reactive astrocytosis and inflam-

mation invite their presence. Chemokines such as VEGFR1/

R2,VEGF, Ccl2, and cKIT have been reported to be involved in

NSC tropism [Chen et al., 2011] and studies have shown that VEGF

mediated homing of cells may play a prominent role in the same

[Chyi et al., 2010]. There is growing evidence to suggest that there is

intimate relationship between CNS morphogenesis and endothelial

cells; the basal lamina produced by endothelial cells contains many

components that are supposed to be important for the maintenance

of a neurogenic niche. Even SDF1 is expressed by both endothelial

cells and astrocytes in stroke lesions and could be important for

NSCs mobilization. Animal studies discussed below show how the

lesion or damaged brain or retina mobilizes stem cells to damaged

areas.

MECHANISMS INVOLVED IN NSC BASED
REGENERATION

Neural stem cells (NSCs) are heterogeneous population of cells

which are mitotically active. These cells have self-renewing and

multipotent capacity which shows the differential pattern of gene

expression at different times at various damaged regions of Brain

[Gage, 2000; Temple, 2001; Ivanova et al., 2002]. Understanding the

mechanisms of NSCs are important because these may be critical for

driving clinical applications. NSC based investigations for different

CNS disorders, for example, PD [Tonnesen et al., 2011], Huntington’s

disease [Connor, 2011], MS [Carbajal et al., 2010], retinal ganglion

cell degeneration [Bull and Marti, 2011] and spinal cord injury (SCI)

[Abematsu et al., 2010] have been studied in various animal models.

The molecular mechanism of NSCs during recovery of injury

induced inflammation, like rolling, adhesion, and extravasations

into damaged CNS regions are sequentially mediated by constitutive

expression of cell adhesion molecules (e.g., CD44) [Pluchino et al.,

2003; Haas et al., 2005; Wang et al., 2010], integrins (such as a4,

FAK, b1) [Campos et al., 2004; Leone et al., 2005; Pluchino et al.,

2005; Campo et al., 2006; Wang et al., 2010; Battiste et al., 2011],

chemokines receptors (Such as CCR3, CCR1, CCR2, CCR4, and CCR5)

[Imitola et al., 2004; Ji et al., 2004; Wang et al., 2010; Andres et al.,

2011a; Choi and An, 2011] on the surface of NSCs. These factors

work as chemoattractive gradient, which leads to specific homing of

NSCs in inflammatory regions of the brain. The recruited NSCs could

exert bimodal effect depending on the CNS resident cells (such as

microglia and astrocytes) which are reactive to pathological insults.

First, neuroprotective effect offered by NSCs is accompanied

by increased expression of neurotrophins such as brain-derived

neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF),

nerve growth factors (NGF), and glial-derived neurotrophic factor

(GDNF) which has been demonstrated in experimentally induced

neurodegenerative CNS disorder in rodents [Teng et al., 2002; Lu

et al., 2003; Chu et al., 2004; McBride et al., 2004; Ryu et al., 2004;

Richardson et al., 2005; Lee et al., 2007; Tamaki et al., 2009;

Jaderstad et al., 2010]. Secondly, the recruited NSCs might promote

immunomodulation by releasing chemokines or cytokines [Pluchino

et al., 2003, 2009] and express relevant receptors (such as

chemokines receptors and cell adhesion molecules), which are

able to change the inflammatory responses. NSCs mediated

mechanism is accelerated by pro-inflammatory cytokines (such as

INFg, IL-1b, Thelper 1-like, and TNFa). These recruited NSCs can

significantly and specifically reduce the effector functions of

inflammatory T-cells as well as macrophages [Einstein et al., 2003].
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NSC transplantation also promises new hope in stroke by

enhancing the axonal transport and structural plasticity in cerebral

ischaemia [Andres et al., 2011b] and infiltration of mononuclear

cells has been found to be decreased at the lesion site of ischaemic

areas in the CNS where recruited NSCs accumulate in stroke animal

model [Park et al., 2002; Kelly et al., 2004].

NEURAL STEM CELLS AND ANIMAL MODELS

Retina is the extension of the central nervous system which provides

a convenient tool to examine the complicated nervous system. It can

be manipulated with relative ease, making it feasible to test the

regenerative potential of different types of stem cells, pharmaco-

logical compounds, and neurotropic factors. Human embryonic

stem cell-derived retinal pigment epithelium (RPE) has been

reported to rescue the visual function in an animal model of retinal

disease [Lund et al., 2006]. When fetal neurons were assessed, they

appeared to survive transplantation surgery better than adult

neurons [MacLaren and Taylor, 1997], highlighting the value of fetal

derived NSCs. Improvement in visual performance was twice that

of untreated controls (spatial acuity was approximately 70% that

of normal non-dystrophic rats) without evidence of untoward

pathology [Lund et al., 2006]. Therefore, stem cells applications

in the eye have become a center of hope for therapeutic use in

regeneration and repair of damaged retina and possibly other neural

tissue. The search for additional foci of NSCs led to their localization

at the junction of retina and ciliary bodies, which is the remnant

of ciliary marginal zone (CMZ) [Mayer et al., 2003]. CMZ is

proliferative region at the periphery of the retina where the retinal

stem cells are located. Thereafter, it was shown that NSCs could be

isolated from mouse, rat, rabbit and human pigmented ciliary

epithelium [Tropepe et al., 2000; Tsonis and Rio-Tsonis, 2004].

Under in vitro conditions, these cells can differentiate into retinal

neurons such as photoreceptors, bipolar cells and muller glial cells.

It has been shown that extrinsic factors strongly influence the

progeny of retinal cells [Ezzeddine et al., 1997].

Further experiments in this direction have tested the in vivo

potential of the retinal stem cells and their progeny, human retinal

sphere cells, in eyes of postnatal (day 1) NOD-SCID mice and in

embryonic chicks [Brenda et al., 2004]. RSCs progeny were able to

survive, integrate, migrate, and differentiate into the neural retina,

especially photoreceptors. The integration and differentiation of

stem cells derived from human ciliary epithelium suggests that these

cells finally may be precious in treating human retinal diseases

[Brenda et al., 2004]. Chacko et al. have also isolated stem cells/

progenitors from peripheral nerve type 1 (PN1, which is expressed in

high levels throughout the PNS) rat retina and adult ciliary and

limbal epithelium and used them for transplantation experiments in

10-day-old rat eyes. These cells survived and differentiated into

photoreceptor-like cells expressing opsin but did not integrate

into the existing retina. Postnatal PN1 retinal progenitors when

transplanted into host retinas where mechanical damage was

induced proved that retinal damage was essential for retinal

integration [Chacko et al., 2004].

Though retinal stem cells exist in the mammalian eye throughout

life, these cells proliferate embyonically and help to build the retina

only in the initial phase, but in postnatal mammals they do not

proliferate to regenerate the retina in response to injury [Ezzeddine

et al., 1997]. However, van der kooy and coworkers [Brenda et al.,

2006] reported that there was 3–8-fold increase in stem cell

population in the region of ciliary margin in chx10 orj/orj and

Mitf mi/mi mutant mice [Coles et al., 2006]. This indicates that loss

of the neural retina or RPE progenitor populations results in increase

in the resident stem cell population in pigmented ciliary epithelium.

Such findings are important in the context of localizing stem cell

progenitors.

To evaluate the morphological integration and host photorecep-

tor rescue as well as the impact on visual behavior, progenitor cells

from neural retina of postnatal Day 1 EGFP transgenic mice were

transplanted into the C57BL/6 rho �/� mice at 4 weeks of age

(n¼ 12) or C3H rd mice at 4 weeks of age [Klassen et al., 2004].

Brain- and retina-derived stem cells transplanted into adult retina

have shown slight evidence of being able to differentiate into new

photoreceptors and integrate into the outer nuclear layer. Sun et al.

[2010] hypothesized that committed precursor or progenitor cells at

later ontogenetic phases might have a greater probability of success

upon transplantation. They showed that donor cells from the

developing retina can integrate into the adult or degenerating retina

at a time coincident with the peak of rod genesis. These transplanted

cells differentiate, integrate into rod photoreceptors, form synaptic

connections, and improve the visual function. Furthermore, they

used genetically tagged post-mitotic rod precursors expressing the

transcription factor Nrl (neural retina leucine zipper) to show that

successfully integrated rod photoreceptors can not be derived from

proliferating progenitor, these are derived from immature post-

mitotic rod precursors. These results define the ontogenetic phase

of donor cells for successful rod photoreceptor transplantation

[MacLaren et al., 2006].

The works discussed here has demonstrated that progenitor

transplantation can achieve limited photoreceptor replacement in

the mammalian retina in rodents; however, replication of these

findings on a clinically relevant scale requires large animal models.

Large animal models like caprine model, horse, pig, etc. have been

successfully used for such proginator transplantation experiments

[Wanga et al., 2007; Revishchin et al., 2008]. In order to investigate

this, some groups have propagated such cells from the brain, retina,

and corneo-scleral limbus and have genetically modified human

NSCs so that GDNF could be expressed upon transplantation into the

spinal cord of SOD 1 mutant rat model. It was found that there was

significant migration of cells into degenerate areas with remarkable

early and end stages of the disease within chimeric regions.

Combined with this study another group showed that neural stem

cell fractions could bring benefits through neurogenesis and release

of growth factors in a population double positive for Lewis X and the

chemokine receptor CXCR4. The Seventy-day-old transgenic SOD1-

G93A mice were transplanted with LeþCXþNSCs (20,000 cells)

or only with vehicle (saline solution). There was generation of

cholinergic motor neuron-like cells upon differentiation. The

transplanted mice survived longer than controls at 23 days [Corti

et al., 2007]. A cursory analysis of these reports reveals that fewer
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studies have analyzed the dose response or comparative efficacy of

these cells when implanted through different routes of administra-

tion. Therefore such approaches may aptly supplement the pace with

which the field is growing.

CONCLUSIONS

There is plenty of data to suggest that much of what is considered as

promise for regeneration may not be limited to neurons but also

include myelin-forming cells; however, whether the intact nervous

system can be successfully reconstituted remains hotly debated.

It is difficult to reconcile the two disparate thoughts and only further

advancement of our knowledge in clinical translation studies

combined with use of primate models of research will uncover the

promise held by demolishing the Cajal’s myth that brain cells do not

divide. With ever increasing funding in stem cell research and

sudden increase in impact factor of stem cell journals, it is the time

for disease model specialists to collaborate with those that specialize

in in vitro manipulations so that side by side comparisons on

potential and efficacy of variety of stem cells from different sources,

stages of development, administration routes and doses between

species can be appropriately evaluated. This will not only accelerate

the pace of clinical translation and consequent stem cell

entrepreneurship for societal benefit but also improve the unmet

requirements of current healthcare delivery systems.
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